Introduction to insect identification, sampling and management

Erin Hodgson, Extension Entomologist Ashley Dean, Extension Entomologist

Outline

- Important insect ID features
- Sampling and recognizing injury
- IPM guidelines

Why are insects unique?

3 body regions

- 1. Head (1 pair of antennae)
- 2. Thorax (3 pairs of legs and 2 pairs of wings)
- 3. Abdomen
- *exoskeleton, joints

Why are insects so successful?

- Small size
- Multigenerational
- Flight
- Wide variety of food choices
- Wide variety of habitat resources

Insect metamorphosis

Complete is most common (egg, larva, pupa, adult)

E.g., beetles, butterflies, flies, lacewings

Note larvae and adults look very different; they often take advantage of totally different food resources. E.g., larvae are predators while adults are herbivores.

Agriculture and Natural Resources

Insect metamorphosis

Incomplete is less common (egg, nymph, adult)

E.g., grasshoppers, true bugs, aphids, hoppers

Note nymphs and adults look very similar; they eat and live in the same area. E.g., both are predatory or herbivores.

How to ID insects: wings...most are membranous

How to ID insects: wings...beetles and earwigs have elytra

How to ID insects: wings...true bugs have hemelytra

How to ID insects: wings...grasshoppers have tegmina

mantids

Chewing:

How to ID insects: mouthparts

Chewing lapping:

Sponging:

How to ID insects: antennae

How to ID insects: legs

Western corn rootworm

False Japanese

Japanese beetle

Easy to confuse...

Easy to confuse within a family...

Lots of variation within a species...

How to sample insects

Use the "best" collecting method

- Varies depending on target insect
- Estimate density or injury
 - # insects per plant
 - % defoliation
- In-field counts, sweep net

Key points about scouting

- Start looking before you expect them
- Continue sampling regularly
- Try to cover the field
- DON'T avoid and DON'T "eyeball"
- Use a defined walking pattern

Common tools

- Notebook
- Smartphone/tablet
- Hand lens
- Sweep net

Other common sampling methods

sticky cards/ pheromone traps

black light trap

in-field

Recognize insect feeding and injury

Agriculture and Natural Resources

Recognizing feeding injury

- Chewing: remove plant tissue,
 girdle stems, defoliate, skeletonize
 leaves, or clip pods
 - Beetles, grasshoppers, caterpillars

Defoliation summary

- Humans tend to over-estimate defoliation
- Calibrate your "eye" every spring to be more accurate
- Defoliation is usually most severe around the perimeter
- Defoliation should be based on whole plants and be field wide

Recognizing feeding injury

- Piercing-sucking: feed on phloem
 and can cause stippling or punctures
 that result in discoloration or
 mottling, honeydew
 - Aphids, thrips, spider mites, stink bugs

Use IPM guidelines to manage pests

Agriculture and Natural Resources

What is IPM?

- Integrated Pest Management
 - Multiple, proactive tactics
 - Suppress pest pressure
 - Sustainable crop production

More than biological control!

Major components of a successful IPM program **Pesticides Natural Host Plant** Cultural Reduce Reproductive **Enemies** Resistance Control **Potential Economics Population Sampling dynamics** Rearing Life cycle **Behavior Identification**

Adapted from Pedigo and Rice 2008

Treatment thresholds

- Economic injury level: lowest population density that will cause economic damage
 - E.g., bushels per acre

- Economic threshold: point at which action should take plant to avoid EIL
 - E.g., pest density or plant injury

Example of an economic threshold

Why use thresholds?

- Minimize input costs
- Protect beneficials and pollinators
- Prevent flares of other pests
- Prolong insecticide efficacy, aka... delay genetic resistance to MOA

Important considerations

- Strive for 100% kill with applications
- Uniform coverage
 - Sufficient volume/pressure
- Be aware of pre-harvest intervals later in season (30d, 45d, 60d)
- Assess product efficacy (check strips!)
- Continue to scout

Take home points

- Use references!
- Know the target pest
 - ID, life cycle, biology
- Know how to sample
 - Recognize injury
 - Time of year, collection method

